Pulmonary O2 uptake and leg blood flow kinetics during moderate exercise are slowed by hyperventilation-induced hypocapnic alkalosis.
نویسندگان
چکیده
The effect of hyperventilation-induced hypocapnic alkalosis (Hypo) on the adjustment of pulmonary O2 uptake (VO2p) and leg femoral conduit artery ("bulk") blood flow (LBF) during moderate-intensity exercise (Mod) was examined in eight young male adults. Subjects completed four to six repetitions of alternate-leg knee-extension exercise during normal breathing [Con; end-tidal partial pressure of CO2 (PetCO2) approximately 40 mmHg] and sustained hyperventilation (Hypo; PetCO2 approximately 20 mmHg). Increases in work rate were made instantaneously from baseline (3 W) to Mod (80% estimated lactate threshold). VO2p was measured breath by breath by mass spectrometry and volume turbine, and LBF (calculated from mean femoral artery blood velocity and femoral artery diameter) was measured simultaneously by Doppler ultrasound. Concentration changes of deoxy (Delta[HHb])-, oxy (Delta[O2Hb])-, and total hemoglobin-myoglobin (Delta[HbTot]) of the vastus lateralis muscle were measured continuously by near-infrared spectroscopy (NIRS). The kinetics of VO2p, LBF, and Delta[HHb] were modeled using a monoexponential equation by nonlinear regression. The time constants for the phase 2 VO2p (Hypo, 49+/-26 s; Con, 28+/-8 s) and LBF (Hypo, 46+/-16 s; Con, 23+/-6 s) were greater (P<0.05) in Hypo compared with Con. However, the mean response time for the overall Delta[HHb] response was not different between conditions (Hypo, 23+/-5 s; Con, 24+/-3 s), whereas the Delta[HHb] amplitude was greater (P<0.05) in Hypo (8.05+/-7.47 a.u.) compared with Con (6.69+/-6.31 a.u.). Combined, these results suggest that hyperventilation-induced hypocapnic alkalosis is associated with slower convective (i.e., slowed femoral artery and microvascular blood flow) and diffusive (i.e., greater fractional O2 extraction for a given DeltaVO2p) O2 delivery, which may contribute to the hyperventilation-induced slowing of VO2p (and muscle O2 utilization) kinetics.
منابع مشابه
Impairment of myocardial O2 supply due to hyperventilation.
Thirteen patients with ischemic coronary heart disease purposely hyperventilated for seven minutes in order to induce hypocapnic alkalosis. One patient experienced chest pain, and one exhibited chemical signs of myocardial hypoxia. Heart rate, blood pressure and myocardial O2 consumption did not change significantly. Coronary blood flow decreased and coronary (a-v)O2 difference widened. Since t...
متن کاملSkeletal Muscle Deoxygenation Following the Onset of Moderate Exercise Suggests Slowed Microvascular Blood Flow Kinetics in Type 2 Diabetes
Objective: People with type 2 diabetes (T2DM) have impaired exercise responses even in the absence of cardiovascular complications. One key factor associated with the exercise intolerance is abnormally slowed oxygen uptake ( O2) kinetics during submaximal exercise. The mechanisms of this delayed adaptation during exercise are unclear but likely relate to impairments in skeletal muscle blood flo...
متن کاملKinetics of O2 uptake, leg blood flow, and muscle deoxygenation are slowed in the upper compared with lower region of the moderate-intensity exercise domain.
Six male subjects [23 yr (SD 4)] performed repetitions (6-8) of two-legged, moderate-intensity, knee-extension exercise during two separate protocols that included step transitions from 3 W to 90% estimated lactate threshold (thetaL) performed as a single step (S3) and in two equal steps (S1, 3 W to approximately 45% thetaL; S2, approximately 45% thetaL to approximately 90% thetaL). The time co...
متن کاملImpairment of Myocardial 02 Supply due to Hyperventilation
Thirteen patients with ischemic coronary heart disease purposely hyperventilated for seven minutes in order to induce hypocapnic alkalosis. One patient experienced chest pain, and one exhibited chemical signs of myocardial hypoxia. Heart rate, blood pressure and myocardial 02 consumption did not change significantly. Coronary blood flow decreased and coronary (a-v)O2 difference widened. Since t...
متن کاملSkeletal muscle deoxygenation after the onset of moderate exercise suggests slowed microvascular blood flow kinetics in type 2 diabetes.
OBJECTIVE People with type 2 diabetes have impaired exercise responses even in the absence of cardiovascular complications. One key factor associated with the exercise intolerance is abnormally slowed oxygen uptake (VO2) kinetics during submaximal exercise. The mechanisms of this delayed adaptation during exercise are unclear but probably relate to impairments in skeletal muscle blood flow. Thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 108 6 شماره
صفحات -
تاریخ انتشار 2010